
Noname manuscript No.
(will be inserted by the editor)

Understanding Parallelism in Graph Traversal on Multi-core

Clusters

Huiwei Lv · Guangming Tan · Mingyu Chen · Ninghui Sun

Received: January 22, 2012

Abstract There is an ever-increasing need for explor-

ing large-scale graph data sets in computational sci-

ences, social networks, and business analytics. However,
due to irregular and memory-intensive nature, graph

applications are notoriously known for their poor per-

formance on parallel computer systems. In this paper
we propose a new hybrid MPI/Pthreads breadth-first

search (BFS) algorithm featuring with (i) overlapping

computation and communication by separating them
into multiple threads, (ii) maximizing multi-threading

parallelism on multi-cores with massive threads to im-

prove throughputs, and (iii) exploiting pipeline paral-

lelism using lock-free queues for asynchronous commu-
nication. By comparing it with traditional MPI-only

BFS algorithm, we learned several valuable lessons that

would help to understand and exploit parallelism in
graph traversal applications. Experiments show our al-

gorithm is 1.9× faster than the MPI-only version, ca-

pable of processing 1.45 billion edges per second on a
32-node SMP cluster. At a large scale, our algorithm is

Huiwei Lv
State Key Laboratory of Computer Architecture, Institute of
Computing Technology, Chinese Academy of Sciences
Graduate School of Chinese Academy of Sciences
Tel.: +86-10-62600676
E-mail: lvhuiwei@ncic.ac.cn

Guangming Tan
State Key Laboratory of Computer Architecture, Institute of
Computing Technology, Chinese Academy of Sciences

Mingyu Chen
State Key Laboratory of Computer Architecture, Institute of
Computing Technology, Chinese Academy of Sciences

Ninghui Sun
State Key Laboratory of Computer Architecture, Institute of
Computing Technology, Chinese Academy of Sciences

1.49× than the MPI-only BFS algorithm in Combina-

tionrial BLAS Library with 6,144 cores.

Keywords Breadth-first Search · Graph Algorithms ·
Hybrid MPI/Pthreads Programming · Lock-free

Queues

1 Introduction

Graphs have been extensively used to abstract com-
plex systems and interactions in emerging ”big data”

applications, such as social network analysis, WWW,

biological systems and data mining. With the increas-

ing growth in these areas, petabyte-sized graph datasets
are produced for knowledge discovery.

Graph applications are typical examples of irregu-

lar applications, whose performance improvements are

notoriously difficult on parallel computer systems [14].
They are different from the traditional computing in-

tensive applications in various ways. Graph computa-

tions are often completely data-driven, there is a higher

ratio of data access to computation than for scientific
computing applications. Moreover, the data in graph

problems are typically unstructured and highly irregu-

lar, which leads to poor locality of graph algorithms.

On the other side, there is an emerging trend to
use hybrid programming model on multi-core clusters.

With increasing numbers of cores per node, multi-core

clusters provide a natural programming paradigm for
hybrid programs, where OpenMP is used for intra-node

data sharing between multi-cores and MPI for com-

munication between nodes, minimizing communication

and synchronization overhead. However, whether the
hybrid programming model outperforms the MPI-only

depends on specific problems being considered [13,8,

19]. It is still not clear how BFS performs with hybrid



2 Huiwei Lv et al.

programming models, or what kinds of parallelism it

can exploit.
Breadth-first search (BFS) is a basic building block

for many important graph applications. The newly an-

nounced Graph500 benchmark [1], which ranks super-
computers based on their performance on data-intensive

applications, chose BFS as their first representative pro-

gram. In this paper we present a new hybrid MPI/Pthreads
BFS algorithm on multi-core clusters. By comparing it

with the traditional MPI-only version, we also made

several findings. Specifically, we make the following con-

tributions:

– We propose a new hybrid parallel BFS algorithm on

a distributed memory system with multi-core pro-

cessors. The algorithm exploits both intra-node and

inter-node parallelism: core-level and memory-level
parallelism to improve throughput on multi-core ar-

chitectures, and pipeline-level parallelism of asyn-

chronous communication to improve scalability on
distributed memory architectures.

– We implement our parallel BFS algorithm with hy-

brid MPI/Pthreads programming. Experimental re-
sults show our algorithm is 1.9× faster than the

MPI-only version in Graph 500 benchmark with 32

nodes, and 1.49× than the MPI-only version in Com-

binationrial BLAS Library with 6,144 cores.
– We learn several valuable lessons that would help to

understand and exploit parallelism in graph traver-

sal applications on multi-core clusters.

The rest of the paper is organized as follows, Sec-
tion 2 briefly introduces Graph500 benchmark and our

experiment platform. Section 3 reports analysis of the

MPI-only implementations of Graph500. Section 4 presents
our new hybrid algorithm, whereas Section 5 shows

experimental results. Section 6 describes the related

works. Finally, Section 7 concludes this paper.

2 Background

In this section we give a brief introduction to the Graph

500 benchmark and its BFS algorithm. We also describe

the architectural parameters of our multi-core cluster.

– Graph 500.

Graph 500 [1] is a set of large-scale benchmarks for
data-intensive applications to complement the Top 500 [2].

It has gained attention from both academia and indus-

try since the benchmark was first released for rank-

ing supercomputers in 2010. Graph 500 use synthetic
kronecker graphs [12] which follow power law distri-

butions. In order to save space, an adjacency array

(or list) representing sparse graph is transformed into

Table 1 Graph datasets used in this paper. Graphs are gen-
erated using synthetic kronecker graph generator in Graph
500.

Scale Vertices number Edge factor Memory usage

30 1.07 billion 16 272 GB
29 537 million 16 136 GB
28 268 million 16 68 GB
27 134 million 16 34 GB
26 67 million 16 17 GB
25 34 million 16 8.5 GB

compressed sparse row (CSR). Table 1 summarizes the

graph datasets used in this paper. The graph size is

determined by two parameters: “Scale” and “Edge fac-

tor”, where the total number of verticesN equals 2Scale,
and the number of edges, M = edgefactor ∗N .

In order to compare the performance of Graph 500

implementations across a variety of architectures, a new

performance metric is adopted in Graph 500. Let time
be the measured execution time for running BFS. Let

m be the number of input edge tuples within the com-

ponent traversed by the search, counting any multi-

ple edges and self-loops. The normalized performance
rate traversed edges per second (TEPS) is defined as:

TEPS = m/time.

– Serial BFS algorithm.

A graph G(V,E) is composed of a set of vertices V and

a set of edges E. Given a graph G(V,E) and a root

vertex r ∈ V , the Breadth-First Search (BFS) algo-

rithm explores the edges of G to traverse all the ver-
tices reachable from r, and it produces a breadth-first

tree rooted at r. In the level-based algorithm a current

queue (CQ) is used to record all vertices at current level
l. Each vertex is fetched from CQ and explored, that is,

its neighboring vertices are visited, then are stored into

a next queue (NQ) if they are visited for the first time.
In some cases, the traversal path traces are recorded so

that we can backtrace the BFS tree. Therefore, we set

the parent of v to be u or array P [v]← u if v is identi-

fied as a neighboring vertex of u during the processing
of exploring u at current level. Correspondingly, vertex

v is inserted into queue NQ for the exploration of the

next level. At the end of each level, we reset the cur-
rent queue CQ to be the next queue NQ. The traversal

finishes when there are no more vertices in NQ.

– Multi-core cluster architecture.

Our experiment platform is a multi-core cluster, con-
nected by Infiniband network. In our experiments, we

use two different scales: 32 and 512 nodes. Each node

is an SMP architecture with two Xeon X5650 CPUs



Understanding Parallelism in Graph Traversal on Multi-core Clusters 3

Table 2 Experiment Platform

Node SMP

Number of CPUs 2

Processor Intel X5650

Number of cores 6
Number of threads 12
Core frequency 2.66 GHz
L1 cache size 384 KB
L2 cache size 1536 KB
L3 cache size 12 MB
Memory type DDR3-1333
QPI Speed 6.4 GT/s

Interconnect Infiniband

Rate 40 Gb/sec (4X QDR)

(Westmere), which are connected through Intel Quick-
Path Interconnect (QPI). The Xeon X5650 has six cores,

each supports simultaneous multithreading (SMT) up

to two threads. Table 2 summarizes its architectural
parameters.

3 MPI-only BFS Algorithm and Analysis

In this section we first introduce an MPI-only BFS algo-

rithm in the Graph 500 benchmark, then perform some

experimental analyses to identify bottlenecks.

Algorithm 1 describes the MPI-only parallel BFS

algorithm. First we partition the graph among the pro-
cesses. Let each process own N/p vertices and all the

outgoing edges from those vertices, whereN is the num-

ber of all vertices, and p is the number of all processes.
Every process only maintains the status of vertices it

owns, and only the owner process of a vertex can iden-

tify whether it is newly visited or not. All the adjacen-

cies of the vertices in the current frontier need to be sent
to their corresponding owner process (getowner(v)). In

practice, each process creates p − 1 message buffers

(outbuf [o]), each buffer is assigned to another process
except itself. To overlap computation and communica-

tion as much as possible, message passing between pro-

cesses use non-blocking MPI Isend and MPI Irecv
(line 14, line 3).

– Observation 1: MPI-only BFS scales poorly across

multiple nodes due to extremely intensive MPI com-
munication with long latency.

Figure 1 plots the scalability of MPI-only BFS (Al-

gorithm 1). We fix the number of nodes and problem
scale, and change the number of processes per node

to see the scalability of the program. As we can see

in the figure, when the number of processes per node

Algorithm 1: MPI-only parallel BFS algorithm.

Input : G(V,E), source vertex r

Output: Array P [1..n] with P [v] holding the parent
of v

Data: outbuf [o]:Array of outgoing buffers
1 while true do
2 foreach u ∈ CQ do
3 check incoming vertices and insert them to

NQ;
4 u← Dequeue CQ;
5 foreach v adjacent to u do
6 o = getowner(v);
7 if o = rank then
8 if P [v] =∞ then
9 P [v]← u, NQ← Enqueue v;

10 NQ Count← NQ Count+ 1;

11 else
12 outbuf [o]← v, outbuf [o]← u;
13 if outbuf [o] is full then
14 MPI Isend(outbuf [o]);

15 flush outbuf and send finish message;
16 MPI Allreduce(&NQ Count,&Sum);
17 if Sum = 0 then break;
18 Swap(CQ,NQ), NQ← ∅;

#Processes / node

1 2 4 8

T
E

P
S

2e+8

3e+8

4e+8

5e+8

6e+8

7e+8

8e+8

9e+8

Scale 24
Scale 27
Scale 30

Fig. 1 Scalability of MPI-only BFS on a 32-node cluster for
kronecker graphs at different scales.

changes from four to eight, the performance degrades.

The communication cost overwhelms the benefit of in-

crease in process numbers. Thus it is necessary to elim-
inate domain decomposition at node level using hybrid

approach.

– Observation 2: On a single multi-core node, multi-

threading BFS performs better than MPI.

Next we compare the MPI-only algorithm with an
OpenMP implementation of BFS program in Graph

500 1 on a single node. The OpenMP parallelism is

exploited for all vertices at current level (vertices in
CQ). As we can see in Figure 2, the OpenMP-only

BFS outperforms MPI-only BFS enormously, and its

1 for fairness, we optimize the original program with bitmap
technique as the MPI program does



4 Huiwei Lv et al.

Fig. 2 MPI-only BFS (REF) v.s. OpenMP-only BFS (OMP)
performance on a single node.

performance continues to increase even if its number

of threads exceeds the number of cores per node. The

improvement is from memory level parallelism. A deep
profile finds out that the bandwidth of BFS increases

as the number of threads grows (discussed in Figure 6,

section 5). In fact, a similar result is observed in previ-
ous work [3] that shows Nehalem can hide the memory

latency by keeping a number of read requests in flight.

Based on these observations, we will design a hybrid
algorithm in the next section.

4 Hybrid BFS Algorithm

In this section we describe the design of a new hybrid
MPI/Pthreads BFS algorithm. The key idea is to keep

events as asynchronous as possible. Our strategies in-

clude: (i) separating computation and communication
into multiple threads to achieve overlapping; (ii) lever-

aging multi-threading mechanism on multi-core archi-

tecture to tolerate latency; (iii) using lock-free algo-
rithms to efficiently execute asynchronous operations.

– Separating communication from computation.

The first step is to separate computation from com-
munication. We group all operations into computation

and communication, then assign them to two differ-

ent threads: a master thread (Algorithm 2) and many
traversal threads (Algorithm 3). The former is in charge

of communication among different MPI processes, and

the latter are in charge of traversing vertices at the cur-
rent BFS level. We choose to use one master thread and

many traversal threads based on the observation that

one core is capable of saturating the lanes of the PCIe

network link.
Algorithm 2 describes the work of themaster thread:

repeatedly check the incoming and outgoing buffers, in-

sert incoming vertices to NQ and send outbuf out. Line

7 checks the status of outbuf , if it is full, then sends its

content to another corresponding process. At the same
time, vertices received in line 6 will be inserted to NQ.

The data structures are described in Figure 3.

Algorithm 2: Hybrid BFS algorithm, part 1:
master thread
Data: Sum:overall number of vertices in all NQ

trav finish:indicates whether all traversal threads
are finished in this level
barr start:barrier for all threads
barr trav:barrier for all traversal threads
barr all:barrier for all threads

1 while true do
2 barrier wait(&barr start);
3 while not trav finish do
4 check incoming vertices and insert them to

NQ;
5 for o ∈ [0..size− 1] do
6 MPI Test(&outreq[o],&flag);
7 if flag then Dequeue(outbuf);

8 for o ∈ [0..size− 1] do
9 if real count[o] = BUFLEN then

10 MPI Isend(outbuf [o], BUFLEN,&outreq[o]);

11 flush outbuf and send finish message;
12 MPI Allreduce(&NQ Count,&Sum);
13 barrier wait(&barr all);
14 if Sum = 0 then break;
15 Swap(CQ,NQ), NQ← ∅;

Algorithm 3: Hybrid BFS algorithm, part 2:

traversal threads
1 while true do
2 barrier wait(&barr start);
3 partition CQ between threads, get my qstart and

qend;
4 foreach u ∈ CQ[qstart..qend] in parallel do
5 foreach v adjacent to u do
6 o = getowner(v);
7 if o = rank then
8 if P [v] =∞ then
9 P [v]← u, NQ← Enqueue v;

10 NQ Count← NQ Count+ 1;

11 else Enqueue(outbuf[o],u,v)

12 barrier wait(&barr trav);
13 trav finish = true;
14 barrier wait(&barr all);
15 if Sum = 0 then break;

– Fine-grained parallel traversal.

Traversal threads first synchronize with the master

thread at start (line 2), then partition vertices in CQ



Understanding Parallelism in Graph Traversal on Multi-core Clusters 5

Fig. 3 Data structures used in hybrid BFS.

between themselves (line 3). After that, each traversal

thread starts to traverse its vertices (line 4-11). There

are two different kinds of vertices here: the first kind is
local vertices, they are visited and inserted to local NQ;

the other kind is remote vertices, they will be inserted

to outbuf and sent to other processes. After traversing

all its neighbors, traversal threads synchronize with
the master thread and wait for it to finish its job, then

start another level (line 12-15).

The outbuf is shared among all traversal threads

and master thread. It is a multiple-producer single-
consumer problem which involves mutual exclusion. Gen-

erally speaking, locks are sufficient when there are not

too many threads. However, to leverage multi-threading
mechanism of multi-core processors, high number of

threads are used to maximize multi-threading paral-

lelism (as the observation 2 in section 3 indicates). In

this situation, the cost of locks would be too high. There-
fore, we need to find another way to implement a highly

effective multiple-producer single-consumer queue. In

the next subsection we will propose a lock-free multiple-
producer single-consumer queue to solve this problem.

– Lock-free based pipeline parallelism for asynchronous
communication.

The key data structure used in our hybrid BFS algo-
rithm is a multiple-producer single-consumer lock-free

queue, which brings asynchrony into parallel BFS and

exploits additional pipeline parallelism for communi-
cation. As we can see in Figure 3, multiple traversal

threads insert outgoing vertices into the queue, while

master thread is waiting to consume the queue by send-
ing vertices out. The algorithm of the lock-free queue is

described in Algorithm 4. The Enqueue(outbuf,u,v)

function first checks whether the buffer is full by re-

peatedly checking (line 2-5) the count variable. Atomic
fetch add() is used here to get a position c in the buffer.

After insert the vertices (line 6-7), real count records

the actual vertex count in the buffer. The Dequeue()

function simply resets count and real count to zero,

note that real count should be cleared first, then count.

Algorithm 4: Enqueue and dequeue functions for
a multi-producer single-consumer lock-free queue.

Enqueue(outbuf,u,v): Insert vertices u and v

into queue outbuf . Dequeue(outbuf): Empty
the queue.

Input: u:vetex to be inserted
v:another vertex to be inserted
outbuf : the buffer queue, it uses two variable

count and real count to record buffer head position
and actual vertex number in the queue respectively.
Function: Enqueue(outbuf,u,v)

1 while count ≥ BUFLEN do yield();
2 c = fetch add(&count, 2);
3 while c ≥ BUFLEN do
4 while count ≥ BUFLEN do yield();
5 c = fetch add(&count, 2);

6 outbuf [c] = v;
7 outbuf [c+ 1] = u;
8 c = fetch add(&real count, 2);

Function: Dequeue(outbuf)
9 real count← 0;

10 count← 0;

5 Experimental Results

In this section we report the experimental results of our

proposed hybrid BFS algorithm, as well as the lessons
we learned.

Our new hybrid algorithm is implemented with MPI
(OpenMPI-1.4.2) and POSIX Pthreads on a standard

Linux environment. BFS’s performance is evaluated by

TEPS, and the graph datasets are described in sec-

tion 2. Our experiment platform is described in sec-
tion 2. In all experiments each measurement runs BFS

64 times from different starting vertices and reports the

harmonic mean of TEPS. For brevity, we use following



6 Huiwei Lv et al.

Versions

REF-32P REF-64P REF-128P REF-256P HBR-32P

T
E

P
S

0.0

2.0e+8

4.0e+8

6.0e+8

8.0e+8

1.0e+9

1.2e+9

1.4e+9

1.6e+9

1
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192

Fig. 4 HBR v.s. REF on a 32-node cluster.

#Threads / Process

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

T
E

P
S

0.0

2.0e+8

4.0e+8

6.0e+8

8.0e+8

1.0e+9

1.2e+9

1.4e+9

1.6e+9

32P
64P
128P
256P

Fig. 5 HBR with different process and thread numbers

abbreviations when plotting the figures: REF for the

MPI-only BFS algorithm in Graph 500 [1], HBR for

our hybrid algorithm, and CBL for the MPI-only BFS
algorithm in Combinationrial BLAS Library [6].

– Lesson 1: A careful orchestration of core level par-

allelism, memory level parallelism and pipeline par-

allelism, gives a big boost to performance.

Figure 4 plots the performance of MPI-only (REF)

and hybrid (HBR) algorithms. The graph data size is

scale 30 (1.07 billion vertices). On the left side of the
figure are the performance results of REF of four dif-

ferent configurations. “REF-32P” denotes running REF

with 32 processes on our 32-node cluster. The highest

TEPS scores of REF is 7.72e+08, achieved by “REF-
128P”. On the right side is the performance results of

HBR with different number of threads per process. The

highest TEPS scores of HBR is 1.45e+09, achieved with
2048 threads per process, which is 1.9× faster than

REF ’s best performance. We use 32 MPI processes for

HBR because our exhaustive experiments (Figure 5)
show that the best configuration is one MPI process

per node.

Figure 5 presents performance trend of HBR with

different configurations. Let process number remain the
same “256P” (i.e. 8 processes per node), we see a drop

of performance when the number of thread per pro-

cess increases. However, with “32P” (i.e. 1 process per

#Threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
E

P
S

0.0

5.0e+7

1.0e+8

1.5e+8

2.0e+8

2.5e+8

3.0e+8

3.5e+8

B
an

dw
id

th
 (

G
B

/s
)

0

2

4

6

8

10

12

14

TEPS
Bandwidth

Fig. 6 Bandwidth and TEPS of HBR v.s. Thread Numbers.
Running HBR at scale 24 with one process on a single node.

node), the performance continually increases until the
thread number reaches 2048.

– Lesson 2: Massive fine-grained thread parallelism

not only takes advantage of memory level parallelism

in state-of-the-art multi-core architecture, but also
improves load balancing.

An important optimization is the use of massive

number of threads (much more than the number of

hardware cores). This finding echoes the results in the
previous work [16]: state-of-the-art multi-core proces-

sors support memory level of parallelim, e.g., Intel Ne-

halem’s fill buffers allow a maximum of 10 concurrent
memory requests. It is one of the most notable features

that make a difference between data-intensive graph ap-

plications and traditional scientific computing applica-

tions. By contrast, if programs are CPU-bound, using
more number of threads than the number of physical

cores will lead to poor performance. Figure 6 plots the

relationship between program bandwidth and number
of threads per process. Running HBR with one process

on a single node, as the number of threads increases, the

bandwidth of HBR increases. As a result, its TEPS in-
creases correspondingly benefiting from the bandwidth

increase. There are knees where the performance be-

gins to degrade when the number of threads continues

to increase. When the number of threads is larger than
some threshold, the overhead of thread context switch

can not be mitigated by the improved memory access

performance with more concurrent memory requests.
Another reason for massive threads is better load

balancing. Massive threading can shorten workload gaps

among different threads, i.e., with more threads, each
thread is doing less and finishes more quickly. Figure 7

profiles execution time distribution of several main com-

ponents in our HBR program. It compares the case

of 4 threads and 2048 threads. On the right side of
the figure, the barrier time (“barrier trav”) of traversal

threads reduces significantly from 73% to 17% despite

the number of threads waited at the barrier increases.



Understanding Parallelism in Graph Traversal on Multi-core Clusters 7

The Master Thread

Versions

32P4T 32P4096T

T
im

e 
(in

 C
P

U
 T

ic
ks

)

0

1e+10

2e+10

3e+10

4e+10

5e+10

6e+10

7e+10

check
isend
send loop
barrier all
others

65%

64%

Traversal Threads

Versions

32P4T 32P4096T

T
im

e 
(in

 C
P

U
 T

ic
ks

)

0

1e+10

2e+10

3e+10

4e+10

5e+10

6e+10

7e+10

local
outbuf
barrier trav
barrier all
others

73%

17%

Fig. 7 Time profiling information for the master thread and
traversal threads of HBR.

#Cores (Problem Scale)

24 (26) 48 (27) 96 (28) 192 (29) 384 (30)

T
E

P
S

 (
lo

g 
sc

al
e)

1e+8

1e+9 HBR
REF

Fig. 8 HBR v.s. REF : weak scalability with no more than
384 cores.

Another benefit is reduced waiting time for buffers. The

left side of Figure 7 gives the time profiling information
for the master thread. The most time consuming part

“check” (line 4-5 of Algorithm 2) reduces more than

a half in absolute value when changed from 4 threads
to 2048. As the total communication volume remains

the same, it means that the master thread spends less

time in waiting for the outbuf and incoming buffers to

become ready.

– Lesson 3: Hybrid programming improves scalability
of the BFS algorithm.

At a small scale of 384 cores, both REF and HBR

achieve good scalability. Figure 8 plots the weak scala-

bility of HBR and REF with no more than 384 cores.
Fix the graph size on each node to scale 25, experiment

on 2 nodes runs scale 26, 4 node runs scale 27, and

so on. REF use 8 processes per node and HBR use 1
process per node, with 1024 threads per process.

At a larger scale of 6,144 cores, REF did not fin-

ish weak scalability test because its exponential space
cost growth in communication buffers leads to memory

overflow. Instead, we compare the strong scalability of

HBR and REF at a smaller problem scale in Figure 9,

#Cores

96 384 1536 6144

T
E

P
S

0

5e+8

1e+9

2e+9

2e+9

3e+9

3e+9

HBR
CBL
REF

Fig. 9 HBR, CBL and REF : scale 26, strong scaling with
6,144 cores.

#Cores (Problem Scale)

24 (24) 96 (26) 384 (28) 1536 (30) 6144 (32)

T
E

P
S

0

1e+9

2e+9

3e+9

4e+9

5e+9

6e+9

HBR
CBL

Fig. 10 HBR v.s. CBL: weak scaling with 6,144 cores.

along with CBL, an MPI-only BFS algorithm in Com-
binationrial BLAS Library [6]. At scale 26, both HBR

and CBL scales better than REF.

Figure 10 compare the weak scalability of HBR and

CBL with 6,144 cores. As we can see in the figure, HBR
achieves 5.60e+09 TEPS with 6,144 cores at scale 32,

1.49× better than CBL.

6 Related Works

Earlier works on Cray XMT/MTA [5,15] and IBM Cyclops-

64 [18] prove that both massive threads and fine-grained

data synchronization improve BFS performance. With
the recent progress of multi-core and SMT, this tech-

nique can be popularized to more commodity users.

Agarwal et al. [3] achieved performances on Intel Ne-
halem EP and EX processors comparable to special pur-

pose hardwares like Cray XMT and Cray MTA-2, and

first identified the capability of commodity multi-core

systems for parallel BFS algorithms. Our algorithm also
proves the feasibility of using massive threads for BFS

on commodity processors. As for asynchrony, the simi-

lar idea of asynchronous algorithm is also used in opti-
mizing communication between SPE and SPU for run-

ning BFS on STI CELL processors [17].

Buluç and Madduri [7] managed to run hybrid BFS

modified from Graph 500 on a 40,000-core machine.



8 Huiwei Lv et al.

They use a improved 2D partition to reduce communi-

cation overhead, which based on Yoo et al.’s work [20]
on BlueGene/L. It is a significant work to run BFS

at such large scale. However, the performance of the

2D hybrid version is roughly the same as the 2D MPI-
only version. The major disadvantage of MPI/OpenMP

is its BSP like synchronization. In this paper we pro-

vide a new approach to overlap communication and
computation by introducing a multiple-producer single-

consumer lock-free queue between computation and com-

munication threads.

Lock-free algorithms design requires deep understand-

ing of an algorithm and the underlying system. Bader

and Cong [4] developed a lock-free algorithm for com-
puting the minimum spanning forest (MSF) of sparse

graphs on symmetric multiprocessors. Kang and Bader [10]

further developed a transactional memory (TM) algo-
rithm for it. Leiserson and Schardl [11] also use a lock-

free data structure as a key component in their work-

efficient parallel BFS. Agarwal et al.’s algorithm [3] use
a lock-protected single-producer single-consumer lock-

free queue based on the FastForward [9] algorithm. We

modify that into multiple-producer single-consumer lock-

free queue using atomic instructions instead of locks.

7 Conclusion

In this paper we propose a new hybrid breadth-first
search algorithm, and present a comprehensive com-

parison with the MPI-only version. Our experimental

analysis leads to several findings, which would be valu-
able for other researchers who want to understand and

exploit parallelism in parallel BFS on multi-core clus-

ters. The hybrid BFS algorithm exploits three kind of

parallelism: core level, memory level, and pipeline level.
Experiments show our algorithm outperforms the MPI-

only algorithm significantly. One important lesson we

learned in the experiments is to use massive number of
threads to take advantage of memory level parallelism

in state-of-the-art multi-core processors. We chose Pthreads

as our thread library and managed to run our program
with thousands of threads per node. However, for fine-

grained programs like BFS, the overhead of thread con-

text switch is still too large. For future works, we believe

that a user level lightweight threading mechanism will
increase the performance further.

8 Acknowledgements

The authors gratefully acknowledge Erlin Yao and the

anonymous reviewers for their helpful comments on pre-

vious drafts of this work.

This work is supported by National 863 Program

(2009AA01A129), the National Natural Science Foun-
dation of China (61003062, 60925009, 60921002, 60803030,

61033009, 60921002, and 60925009) and 973 Program

(2011CB302502 and 2011CB302500).

References

1. The Graph 500 List (2011). URL
http://www.graph500.org/

2. The Linpack Benchmark (2011). URL
http://www.top500.org/project/linpack

3. Agarwal, V., Petrini, F., Pasetto, D., Bader, D.A.: Scal-
able graph exploration on multicore processors. In: Pro-
ceedings of the 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Stor-
age and Analysis, SC ’10, pp. 1–11. IEEE Computer So-
ciety, Washington, DC, USA (2010)

4. Bader, D.A., Cong, G.: Fast shared-memory algorithms
for computing the minimum spanning forest of sparse
graphs. J. Parallel Distrib. Comput. 66, 1366–1378
(2006)

5. Bader, D.A., Madduri, K.: Designing multithreaded al-
gorithms for breadth-first search and st-connectivity on
the cray mta-2. In: Proceedings of the 2006 Interna-
tional Conference on Parallel Processing, ICPP ’06, pp.
523–530. IEEE Computer Society, Washington, DC, USA
(2006)

6. Buluç, A., Gilbert, J.R.: The Combinatorial BLAS: De-
sign, implementation, and applications. The Interna-
tional Journal of High Performance Computing Appli-
cations (2011)

7. Buluç, A., Madduri, K.: Parallel breadth-first search on
distributed memory systems. CoRR abs/1104.4518
(2011)

8. Cappello, F., Etiemble, D.: Mpi versus mpi+openmp
on ibm sp for the nas benchmarks. In: Proceedings
of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), Supercomputing ’00. IEEE Computer Soci-
ety, Washington, DC, USA (2000)

9. Giacomoni, J., Moseley, T., Vachharajani, M.: Fastfor-
ward for efficient pipeline parallelism: a cache-optimized
concurrent lock-free queue. In: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice
of parallel programming, PPoPP ’08, pp. 43–52. ACM,
New York, NY, USA (2008)

10. Kang, S., Bader, D.A.: An efficient transactional mem-
ory algorithm for computing minimum spanning forest of
sparse graphs. SIGPLAN Not. 44, 15–24 (2009)

11. Leiserson, C.E., Schardl, T.B.: A work-efficient parallel
breadth-first search algorithm (or how to cope with the
nondeterminism of reducers). In: Proceedings of the 22nd
ACM symposium on Parallelism in algorithms and archi-
tectures, SPAA ’10, pp. 303–314. ACM, New York, NY,
USA (2010)

12. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos,
C.: Realistic, mathematically tractable graph genera-
tion and evolution, using kronecker multiplication. In:
A. Jorge, L. Torgo, P. Brazdil, R. Camacho, J. Gama
(eds.) Knowledge Discovery in Databases: PKDD 2005,
Lecture Notes in Computer Science, vol. 3721, pp. 133–
145. Springer Berlin / Heidelberg (2005)

13. Loft, R.D., Thomas, S.J., Dennis, J.M.: Terascale spec-
tral element dynamical core for atmospheric general cir-
culation models. In: Proceedings of the 2001 ACM/IEEE



Understanding Parallelism in Graph Traversal on Multi-core Clusters 9

conference on Supercomputing (CDROM), Supercom-
puting ’01, pp. 18–18. ACM, New York, NY, USA (2001)

14. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.,
Tourancheau, C.B.: Challenges in parallel graph process-
ing (2006)

15. Mizell, D., Maschhoff, K.: Early experiences with large-
scale cray xmt systems. In: Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Pro-
cessing, pp. 1–9. IEEE Computer Society, Washington,
DC, USA (2009)

16. Molka, D., Hackenberg, D., Schone, R., Muller, M.S.:
Memory performance and cache coherency effects on an
intel nehalem multiprocessor system. In: Proceedings of
the 2009 18th International Conference on Parallel Archi-
tectures and Compilation Techniques, pp. 261–270. IEEE
Computer Society, Washington, DC, USA (2009)

17. Scarpazza, D.P., Villa, O., Petrini, F.: Efficient breadth-
first search on the cell/be processor. IEEE Trans. Parallel
Distrib. Syst. 19, 1381–1395 (2008)

18. Tan, G., Sreedhar, V., Gao, G.: Analysis and performance
results of computing betweenness centrality on ibm cy-
clops64. The Journal of Supercomputing 56, 1–24 (2011)

19. Wu, X., Taylor, V.: Performance characteristics of hy-
brid mpi/openmp implementations of nas parallel bench-
marks sp and bt on large-scale multicore supercomputers.
SIGMETRICS Perform. Eval. Rev. 38, 56–62 (2011)

20. Yoo, A., Chow, E., Henderson, K., McLendon, W., Hen-
drickson, B., Catalyurek, U.: A scalable distributed par-
allel breadth-first search algorithm on bluegene/l. In:
Proceedings of the 2005 ACM/IEEE conference on Su-
percomputing, SC ’05, pp. 25–. IEEE Computer Society,
Washington, DC, USA (2005)


